aplicações do Teorema de Pitágoras no cotidiano
Vestibular

aplicações do Teorema de Pitágoras no cotidiano


O Teorema de Pitágoras está presente em diversas situações no cotidiano. Vamos através de exercícios  demonstrar algumas aplicações. 

1) Dois navios, A e B, partem de um ponto O e seguem em direção perpendicular um ao outro. O navio A segue a uma velocidade constante de 12 metros por segundo e o navio B mantém uma velocidade constante de 18 metros por segundo. Determine a distância em linha reta entre eles após 15 segundos. 

Resolução:
Navio A 
Após 15 segundos ele está a 180 metros do ponto O, pois 12 * 15 = 180. 

Navio B 
Nessa situação, a distância será de 270 metros do ponto O, pois 18 * 15 = 270. 

D² = 180² + 270² 
D² = 32 400 + 72 900 
D² = 105 300 
?D² = ?105 300 
D = 324,50 

Após 15 segundos, a distância entre os navios em linha reta será de 324,50 metros. 

2) Depois de se ter aplicado algumas situações do Teorema de Pitágoras no plano vamos agora aplicar o mesmo teorema, mas, numa situação do espaço.

Suponhamos que pretendemos construir em cartolina um chapéu de um palhaço com as medidas indicadas na figura seguinte:



O cone

Qual terá que ser a altura do chapéu?

Resolução:

Visto que o diâmetro do cone (a figura geométrica representada por um chapéu de palhaço é um cone) mede 16 cm, o raio, sendo metade do diâmetro, mede 8 cm.

Encontramo-nos em condições de aplicar o Teorema de Pitágoras:
17²=h²+8² <=> h²=17²- 8² <=>  h=Ö 225
    Portanto, h=15 cm, isto é, a altura do chapéu teria que ser 15 cm.

3) Qual a distância da escada ao muro, medida sobre o chão?
A escada encostada ao muro

 Podemos encarar este problema de uma maneira "matemática ", resumindo-se à determinação da medida P de um dos catetos de um triângulo rectângulo de hipotenusa 6 e em que o outro cateto mede 4,47.
     
4,47cm      Triângulo     6 cm
P = ?
    


Aplicando o Teorema de Pitágoras :

62 =(4,47)2 +x2.Logo , x2 = 16.0191.

Aplicando a raiz quadrada a x , vem :

x = 4.0024.

4) Determine a altura h do triângulo equilátero abaixo:


O triângulo PQR é equilátero, vamos calcular sua altura com base na medida l dos lados. Ao determinarmos a altura (h) do triângulo PQR, podemos observar um triângulo retângulo PHQ catetos: h e l/2 e hipotenusa h. Aplicando o teorema de Pitágoras temos:



DATAHOSTING.COM.BR|DE http://www.datahosting.com.br/afiliados/ok.php?id=8893
HOSPEDAGEM DE SITES R$14,90 com 10GB de Espaço e 150GB de Tráfego, Construtor de Sites e...
Hospedagem de sites com planos gigantes a partir de R$14,90, 10GB de espaço, 150Gb de tráfego de
DATAHOSTING.COM.BR|DE WWW.DATAHOSTING.COM.BR






- Cones Questões Vestibular
Artigo sobre áreas e volume de um cone, classificação dos cones com questões resolvidas  para um melhor um melhor melhor aprendizado. Cones Dado um círculo de centro O e raio R no plano B, e um ponto P fora do plano. O cone será formado por...

- área Do Triângulo Retângulo Questões
Estudaremos nesse artigo sobre a área do triângulo retângulo com questões resolvidas para um melhor aprendizado. área do triângulo retângulo A área do triângulo retângulo é dada por  onde h é a altura do triângulo, b a...

- Relações Trigonométricas Num Triângulo Retângulo Questões Vestibular
1) Encontre a medida RA sabendo que tg  = 3.3 = 9 / x3x = 9x = 3(RA)² = 9² + 3²(RA)² = 90(RA) =  2) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65° = 0,91; cos 65° = 0,42 ; tg 65° = 2,14)...

- Questões Sobre Teorema De Pitágoras
Artigo com várias questões sobre Teorema de Pitágoras 01. A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. O comprimento dessa escada é de: a) 12 mb) 30 mc)...

- Questões De Relações Métricas No Triângulo Retângulo
Artigo com questões sobre relações métricas no triângulo retângulo resolvidas e propostas DATAHOSTING.COM.BR|DE http://www.datahosting.com.br/afiliados/ok.php?id=8893HOSPEDAGEM DE SITES R$14,90 com 10GB de Espaço e 150GB de Tráfego, Construtor...



Vestibular








.